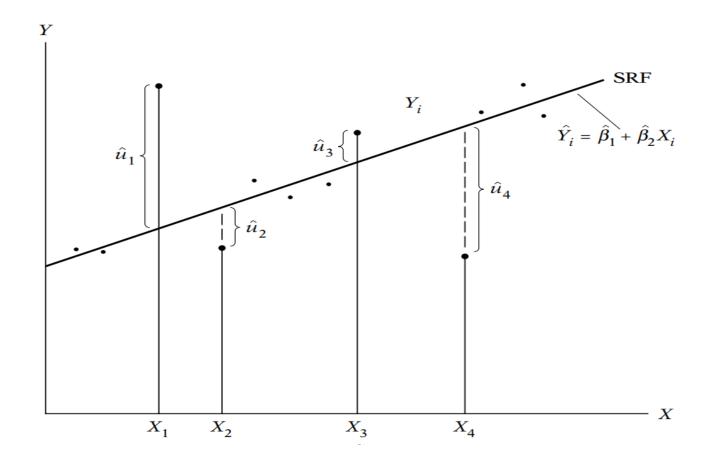
References


- Introduction to Econometrics By James Stock and Mark Watson
- Basic Econometrics By Damodar Gujarati

What are we looking at??

- We would be dealing with errors and variation.
- Objective is to minimize variation in errors and maximize variation in explained variables.
- Ideally one should look at minimum variation for all the moments condition.

Linear Regression

 $Y = \beta_1 + \beta_2 X + u$

METHODOLOGY

- BETAs: Slope Linear
- X explanatory variables
- X can be both linear as well as non-linear
- Error is not related to another error.
- Heteroscedasticity and Autocorrelation
 Multicollinarity

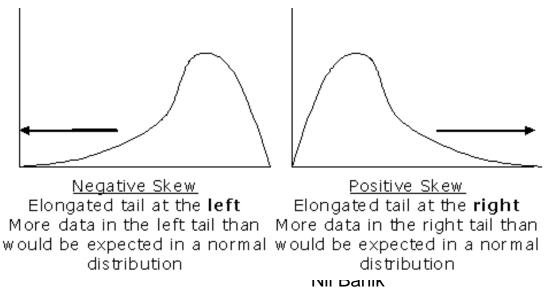
Errors and X-Variables

Errors are Y less Y-hat

X variables are non-stochastic

X variables can be linear or non-linear (depending upon model)

Beta are linear

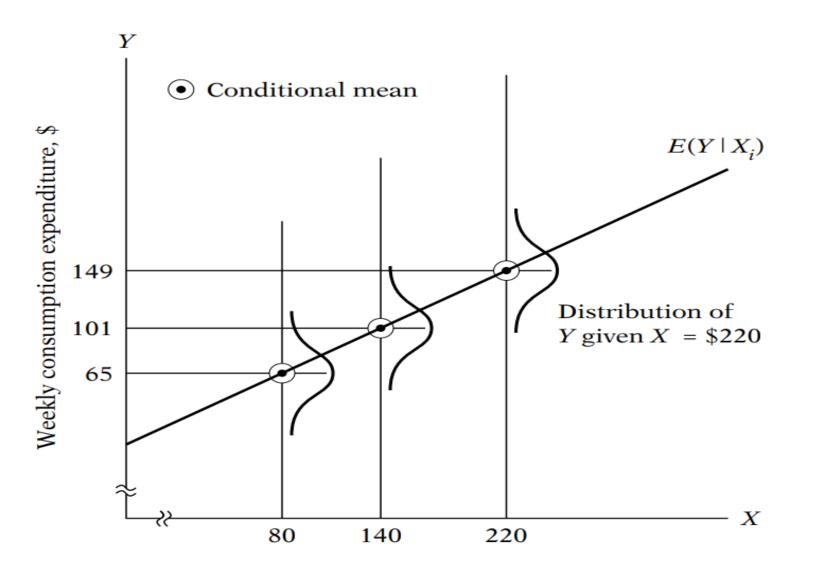

OLS assumes errors are normally distributed

Non-Parametric estimation does not assume any specific distribution Function about the error terms

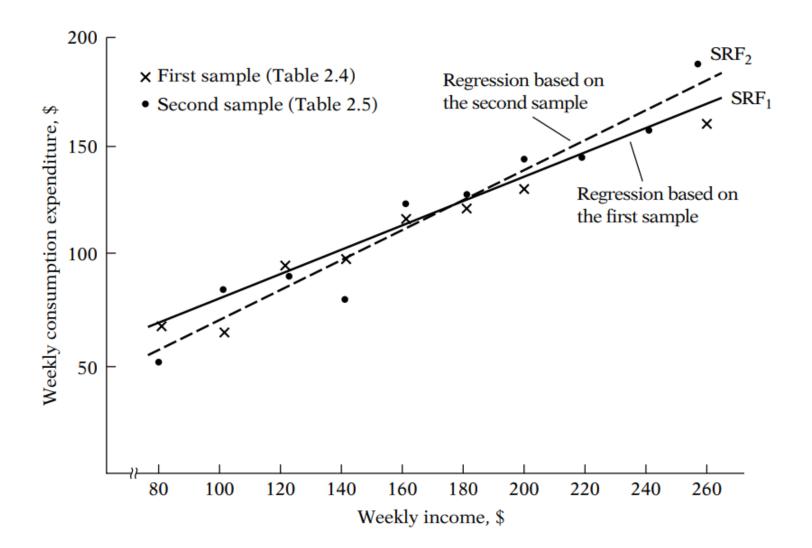
Generalized Methods of Moment is about minimizing all moments condition simultaneously.

Skewness

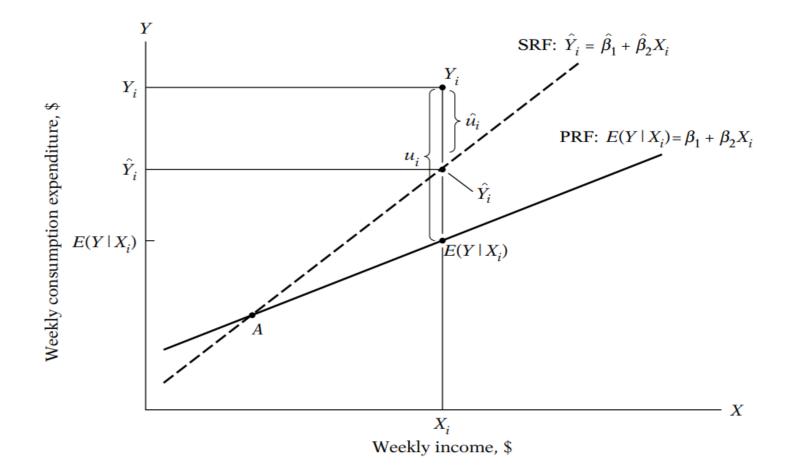
- For positive skewness: mean-income>median-income>mode-income
- Skewness of a normal density is zero
- Skewness is the third moment
- Negative skewness coefficient means it is a negative skewed distribution. Generally measure of skewness is 3(mean-mode)/sd.
- We are measuring income on the horizontal and probability of the population with that income on the vertical axis. When we have more people with less income we are saying the peak of the density is right/positive skewed.


Kurtosis

- Fourth moment condition.
- Smaller variance means sharper, pointed, density function – also known as leptokurtic distribution.
- Leptokurtic has values greater than 3 and Platykurtic has values less than 3.
- Normal density has values equal to 3.


Weekly family Income X, \$

x >	80	100	120	140	160	180	200	220	240	260
VVeekly family consum ption expendi ture, Y \$	55	65	79	80	102	110	120	135	137	150
	60	70	84	93	107	115	136	137	145	152
	65	74	90	95	110	120	140	140	155	175
	70	80	94	103	116	130	144	152	165	178
	75	85	98	108	118	135	145	157	175	180
	-	88	-	113	125	140	-	160	189	185
	-	-	-	115	-	-	-	162	-	191
Total	325	462	445	707	678	750	685	1043	966	1211
Conditional Mean of Y, E(Y/X)	65	77	89	101	113	125	137	149	161	173


Conditional Mean

Sample Regression Function

ESS, RSS, and TSS

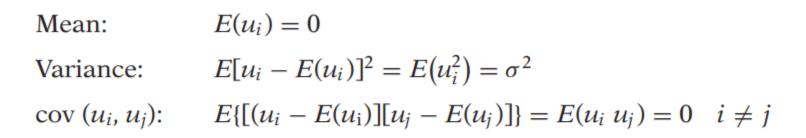
Important Formulas

$$egin{aligned} &\sum \hat{u}_i^2 = \sum (Y_i - \hat{Y}_i)^2 \ &= \sum (Y_i - \hat{eta}_1 - \hat{eta}_2 X_i)^2 \ &r = rac{\sum \left(x_i - ar{x}
ight) \left(y_i - ar{y}
ight)}{\sqrt{\sum \left(x_i - ar{x}
ight)^2 \sum \left(y_i - ar{y}
ight)^2}} \end{aligned}$$

$$\hat{\beta}_2 = \frac{n \sum X_i Y_i - \sum X_i \sum Y_i}{n \sum X_i^2 - (\sum X_i)^2}$$
$$= \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2}$$
$$= \frac{\sum x_i y_i}{\sum x_i^2}$$

Results (Cont.)

cov $(u_i, X_i) = E[u_i - E(u_i)][X_i - E(X_i)]$


- $= E[u_i(X_i E(X_i))] \quad \text{since } E(u_i) = 0$
- $= E(u_iX_i) E(X_i)E(u_i)$ since $E(X_i)$ is nonstochastic
- $= E(u_i X_i)$ since $E(u_i) = 0$
- = 0 by assumption

Formula for one tail or two tail tests

$$\mathsf{t} = \frac{\bar{X} - \mu}{s} / \sqrt{n}$$

$$\hat{\sigma}^2 = \frac{\sum \hat{u}_i^2}{n-2}$$

Results (Cont.)

The assumptions given above can be more compactly stated as

$$u_i \sim N(0, \sigma^2)$$

$$t = \frac{\hat{\beta}_2 - \beta_2}{\operatorname{se}(\hat{\beta}_2)} = \frac{\operatorname{estimator} - \operatorname{parameter}}{\operatorname{estimated}}$$
$$= \frac{(\hat{\beta}_2 - \beta_2)\sqrt{\sum x_i^2}}{\hat{\sigma}}$$

Some Intuition and Observations

- F test: Y Hat is significantly better than Y Bar.
- Regressing Y on Y Bar yields $R^2 = 0$.
- F test: Also on model components (whether or not add any additional variables, as in Xs).
- EXCEL report upper and lower confidence interval (CI) based on one-tail critical *t-statistics*.

Results (Cont.)

- For calculating CI, you need information about coefficients (β), standard errors of (β) and Critical *t*.
- Changing the scale, for instance, reporting 1 thousand as oppose to 1000, will increase the coefficient 1000 times.
- A *P* value of 0.05 means that null is correct only 5 times out of 100 times. Hence failing to accept the *Null*. *P* value is the probability of *Null* being correct.

Adjusted R² and F test Adjusted R² = $1 - \frac{RSS/(fk)}{TSS/(fk)}$

F test on model component =

$$F = \frac{(R_F^2 - R_R^2)/(Noof \text{Restrictions})}{(1 - R_F^2)/(Noof observations)}$$

Confidence Intervals:

$$\Pr\left[-t_{\alpha/2} \le \frac{\hat{\beta}_2 - \beta_2}{\operatorname{se}(\hat{\beta}_2)} \le t_{\alpha/2}\right] = 1 - \alpha$$

Takeaways from Multiple Regression

- 1. Explain the Anova
- 2. Explain Mean Squares, ESS, RSS, TSS
- 3. Derivation of F both for model components, and Y-bar vis-à-vis Y-hat
- 4. How to calculate t-statistics
- 5. Check for endogeneity (that is relationship between X and Errors)
- 6. Corollary, covariance between Y-hat with Error
- 7. Prediction/Projection/Forecast